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ABSTRACT. Topological defects could have seeded primordial inhomogeneities in cos- 
mological matter. We examine the horizon-scale matter and geometry perturbations 
generated by such seeds in an expanding homogeneous and isotropic universe. Evolv- 
ing particle horizons generally lead to perturbations around motionless seeds, even when 
there are compensating initial underdensities in the matter. We describe the pattern of 
the resulting large-angular scale microwave anisotropy. Anisotropies generated by moving 
seeds on horizon scales are likely to be significant. 

It is generally believed that structure in the universe has developed by gravitational 
instability from small primordial inhomogeneities in matter. In one class of models, the 
matter inhomogeneities develop around topologically stable defects such as cosmic strings 
or domain walls which are generated in a cosmological phase transition’,‘, around short- 
lived ‘knots’ of cosmic texture3, or around scalar field condensates such aa soft bosons4. 
Since their gravitational fields are typically quite weak, the seeds are ‘stiff’ in that their 
evolution is negligibly affected by the gravitational inhomogeneities they produce. In an 
earlier paper’, we developed the linear theory of the growth of inhomogeneities and metric 
disturbances in a cosmology containing stiff matter seeds. We paid particular attention 
to seeds produced in a initially homogeneous universe, in which case the seeds are always 
compensated by inhomogeneities in the matter. 

Here, we calculate the linear gravitational fields in specific models of~seeds, with and 
without compensating initial matter underdensities (because the observable consequences 
can be very different). Although our seed configurations are simplistic, more realistic 
configurations can only be handled numerically, and would not illustrate as nicely the 
essential phenomenology in seed cosmologies. We also calculate the Sachs-Wolfe microwave 
temperature anisotropy, which is the most important observable effect of very large-scale 
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inhomogeneities. The anisotropies considered here are quite different from the small-scale 
anisotropies previously considered for cosmic strings’-‘, collapsing texture knots”, or 
collapsing domain wall bags I1 all of which are generated by the motions of the seeds. , 
We find that even static seeds can generate anisotropies because information about their 
existence travels outward at the finite speed of light, thus the gravitational fields are not 
static at the causal horizon. Secondly, the small angular scale anisotropies were calculated 
for a static vacuum background, while our seeds are surrounded by cosmological matter 
whose distribution is perturbed by the seeds, thus generating further microwave distortions 
which may add to or cancel the total anisotropy. These are absent in the vacuum case. 

II. Gravitational Fields of a Point Mass, a String, and a Wall 

We take the speed of light, c, and Newton’s constant, G, to be unity unless specified 
otherwise. We assume a flat Friedmann-Robertson Walker (FRW) cosmology containing 
on average a critical density of dust, thus the matter is cold, dark, and dissipationless 
(CDM). The metric, including perturbations due to the seeds is, to first order, 

g&x, 7) = a2 diag [-&I, I,11 + a2 L&, v), 47) 0~ TV, (2.1) 

where I] and x are conformal time and comoving position, respectively, and a is the scale 
factor. We use the synchronous gauge with h,, = h,: = 0. 

If the seeds were created from an initially homogeneous universe, then conservation 
of energy and momentum mandates that the energy and the momentum of the seed be 
compensated by perturbations in the energy and momentum of the matter fields, i.e. the 
CDM, within the same horizon volume (VS §3es). If the seeds were created at some 
very early time when the horizon was very small, the detailed spatial distribution of the 
initial compensation does not matter on larger “macroscopic” scales. If we distribute the 
initial matter and velocity compensations “locally”, that is, so that the growing mode 
density perturbation is everywhere proportional to the source energy density, we obtain 
solutions for the CDM density and background metric which remain self-similar. If the 
universe is not initially homogeneous, or the apparent initial horizon is much smaller than 
the true horizon due to an early inflationary phase, the seeds may not be compensated 
by initial matter inhomogeneities on the scale of the horizon, but instead there may be 
metric perturbations so that the gravitational field equations are satisfied. We then obtain 
another set of self-similar gravitational fields. 

Once the initial conditions are chosen, the CDM density perturbation 6, evolves 
according to, 

K + i& - +& = 4*(8,, + &), 

where Q,, is the stress-energy tensor of the seed. Taking the limit qi + 0 avoids in- 
troducing a scale in the problem, because the density evolves to a pure growing mode, 
6, 0: T’, while q is still arbitrarily small. 

2 



Of course, our universe has not always been dust-dominated. The comoving horizon 
size at the time of equal densities in CDM and radiation, qeq, introduces a new scale. 
In the radiation era, part of the compensation resides in the radiation. Sound waves 
and free-streaming of the radiation smooth this compensation exponentially over a scale 
of order 71.~ (VS’). Since this scale is accessible to cosmological large-scale structure 
observations and microwave anisotropy measurements, corrections due to the radiation 
may be significant. However, since we consider only very large-scale effects, we can ignore 
the radiation corrections. 

1. A Point Mass 

The simplest type of seed is a localized concentration of energy. If this point mass 
seed remains stationary, its net stresses are zero, and its gravitational fields are identical 
to those of CDM. Thus, compensating the point mass with CDM results in an essentially 
perfectly homogeneous universe. 

On the other hand, an initially uncompensated point mass is equivalent to a point 
overdensity in the CDM. This is a well-studied example, but it is nevertheless instructive. 
The total mass accreted around the point msss grows with the scale factor and soon 
dominates the initial seed. Let the point mass be at the centre of the coordinate system, 
and let the total mass of the overdensity (assumed much bigger than the seed mass M,), 
grow at late times as M(T) = v2 MO. Normalising so that 7, = a(~~) = 1 today, there is a 
CDM point overdensity of magnitude 2rM(q)/3. F’r om the formulae in VS’, we see that 
the metric disturbances extend beyond the particle horizon, 

hij=F ($-:6;j) (1+59) 1x1 >O. 

Thus uncompensated seeds are acausal in the sense that they require adjustment of the 
metric at points which have not been in causal contact with the seed (1x1 > 7). Notice that 
equation (2.3) does not make the usual Newtonian assumption that the scale of spatial 
gradients is much smaller than the horizon scale (‘7-l < r,~), hence it generalises the usual 
form of the Newtonian metric for a point ma&‘. 

2. Infinite Straight Cosmic String 

In certain theories with a symmetry breaking phase transition, a scalar field is 
trapped along topologically stable linelike regions of positive energy density. This is a 
cosmic string l3 . We represent the stress-energy of a static cosmic string along the z axis 
as CL&, 7) = ,u diag[l, 0, 0, -116(z) 6(y) w h ere Gp/c2 is the dimensionless rest-frame 
mass per unit length. Since the width of a Grand Unified cosmic strings is only a few 
hundred Planck lengths, the stress-energy distribution of a string in its transverse is well 
approximated by a &function. Although the energy perturbation very close to a string is 
highly nonlinear, the gravitational fields of the string are weak’ and linear theory provides 
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a good approximation for the metric perturbations. There is no net gravitational force on 
the CDM around the string (eqn 2.2). 

First consider an uncompensated cosmic string. Viler&in’ showed that the static 
spacetime around a string in vacuum is flat with a conical singularity at the string. The 
spatial manifold transverse to the string is a 2-dimensional cone with an angular deficit 
8np. To construct a flat FRW cosmology with an uncompensated string, we multiply the 
vacuum metric by a time dependent conformal factor uz, where a(q) is just the FRW scale 
factor13v’4. Since the two metrics are conformally related, the FRW spatial slices have 
the same conical geometry as do the vacuum spatial slices. There are no initial matter 
inhomogeneities and none can develop. It would be difficult to detect such a string because 
the spacetime is locally flat (except on the string) and the matter fields are completely 
uniform. An observer within the horizon of the string can detect it via gravitational 
lensing, but outside its horizon there is no detectable effect. 

Next, consider the compensated string. If the string is created from an initially 
homogeneous universe, there must be a compensating underdensity in the matter, which 
at late times is, 6, = -2rr/.~~~6(~)6(y)/5. Th e metric perturbation has rotational symmetry 
about the string axis, 

hij(l,n)lrT.(u)[~ 8 PJ+/LTz(U)[ ZYfz Tt$ !I+$? [i 8 i], 

(2.4) 

. , 
This result can be obtained from the equations of VS ‘. For a different approach see ref. 
15. A nonzero, evolving, gravitational field around a compensated static string might 
initially appear surprising. However, since there is no conservation law constraining the 
string tension (equivalently, Qij), it is not compensated in the initial conditions. Thus the 
stresses give rise to nonzero fields in regions in causal contact with the string. Outside the 
horizon, the metric functions of course vanish smoothly. As the horizon evolves outward at 
the speed of light, the metric also evolves. Since the string introduces no new length scale, 
hij evolves self-similarly, depending only on the ratio u = T/v of the comoving distance 
from the string to the comoving horizon. 

The gravitational field of the string alone (ignoring the compensating initial matter 
underdensity) is tracefree with amplitude +Y’, in our gauge. Thus the other terms in 
equation (2.4) are due to the linelike compensating underdensity. Very close to the string 
the metric becomes singular, with ‘Ir + -2ln(zt) and Tz -+ -2/5u2, apart from the 
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&function. The logarithmic divergence is due to the conical singularity at the assumed 
infinitely thin string. This term becomes smooth and finite upon modeling the finite 
width of a gauge string I3 The other divergences are the linearized, synchronous gauge . 
representation of the gravitational field of a line of underdensity, which creates a : repulsive 
force. On small scales, radiative free-streaming and non-linear clustering of the CDM 
smooth out the divergent underdensity over a finite region with finite underdensity. 

3. Infinite Flat Domain Wall 

When the topologically stable positive energy density regions of the scalar field are 
sheetlike, a domain wall results. The energy-momentum tensor for a static domain along 
the z-y plane in a matter-dominated flat FRW cosmology is O,, = a(g)&(z)diag[l, -1, -l,O], 
where D is the mass per unit area of the wall. This stress-energy tensor approaches zero 
sufficiently quickly as vi -+ 0 that the initial compensation is effectively zero. Thus there 
is no distinction between an initially uncompensated wall and a compensated wall. Using 
the formulae in VS5, the linear metric perturbation is 

hij = $agr126(z) diag [O,O, l] . 

This metric is nonzero only at the wall itself. The wall in its neighbourhood stretches 
out the synchronous coordinates in the transverse direction, hence repelling the CDM. 
This repulsion evacuates a region of physical thickness F(a~)~c resulting in a CDM 
underdensity, 

6, = +(,),26(z). 
The wall generates its own compensation even in an initially uniform universe, but thii 
underdensity remains localised in the neighbourhood of the wall. It is not expelled else- 
where, because there are no tidal forces, and everywhere else the CDM density remains 
uniform. This does not mean that particle number conservation is violated, because the 
underdensity arises from stretching the evacuated volume at the wall. 

III. Microwave Temperature Patterns 

We now consider perturbations of the temperature of an initially uniform gas of 
photons due to the time-variation of the gravitational fields”. This Sachs-Wolfe effect 
manifests itself as an angular variation in the microwave temperature pattern around the 
observer, 

ATsw(C) = -ilT fi’ii’iij(Xy(~),l])d~ 

T 

where q(q) = (T., - q)ri describes the photon trajectory along the line of sight fit m, 
is the conformal time at which the photons were last scattered, and q0 is the conformal 
time of observation. We typically assume that 711. = 0 except where doing so would lead 

5 



Figure 1 : An all-sky map, centred on the observer, of the temperature anisotropy pattern 
with monopole subtracted, for a single string at closest redshift 0.13 (fractional distance 
u, = 0.06). The string lies parallel to the polar axis. The contour limits are f5~, and the 
contour spacing is 0.714~. The solid contours are positive-valued, the dashed contours are 
negative-valued. The dipole is most prominent, and there are two hotspots at the string 
“endpoints” which mark the angular extent of string inside the observer’s horizon. 

to an unphysical divergence, and also assume that the matter-era solutions of $11 are 
adequate. Averaging equation (3.1) 
mean anisotropy, 

over all photon directions and all volume gives the 

*Tsw 
T (3.2) 

That is, the average microwave temperature decreases faster (slower) than in a pure 
matter-dominated universe if the seeds result in a net decrease (increase) in the average 
CDM overdensity, &. Although a mean temperature is not measurable, this argument 
suggests that we would see a hotspot (coldspot) when looking towards an isolated seed 
which has created a local overdensity (underdensity). The compensated point mass and 
the uncompensated string do not change &, so no anisotropy is expected. The compen- 
sated string and the wall generate growing underdensities and hence a net reddening of 
photons. In general, a compensated seed produces a net blue (red)-shift if its average 
equation of state satisfies p(pressure) > -i~(density) (p < -5~) while an uncompen- 
sated seed produces a net blue (red)-shift if p/p for the seed is greater (less) than that for 
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Figure 2 Same as Figure 1 for a string at redshift 1 (~0 = 0.30). The dipole is less 
prominent though it still dominates. The bluespots are more clearly visible though of lower 
amplitude. 

the matter background. 

In a flat matter-dominated universe with pure growing mode perturbations, the 
peculiar gravitational potential, @, at a fixed comoving point does not change with time 
and (3.1) yields the classical result 12*18 that the anisotropy comprises a gravitational 
redshift term and a Doppler term due to the peculiar velocity difference between observer 
and last scattering: 

*Tsw 
T = $[*(+(~I)) - +7(%))1+ ;w . V@(x,(q,)) - 7foii. v*(x7(~o))]* (3.3) 

Note that even if the gravitational fields are strong near the seeds or compensation, 
the anisotropies need not be large. Physically, this is because photons which gain energy 
falling into a deep potential well lose this energy climbing out. There is a net energy 
change only if they are emitted deep within the well. Also, the anisotropy pattern can 
extend over the entire sky, unless the gravitational fields are localised. 

1. The Pattern from a Point Mass 
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Figure 3 Same as Figure 1 for a string at redshift 3.7 (w = 0.54). [contour plot: redshift 
3.0, u, = 0.501 The two hotspots are still visible, the dipole amplitude is greatly reduced, 
and a cold strip begins to show up parallel to the string. 

The temperature around a compensated mass is uniform and we will not consider 
it further. The pattern around an uncompensated mass is circularly symmetric, 

ATsw (Ii) = ; [y$ + --&I rco - 
T (3.4) 

Since the gravitational field of an uncompensated point mass is equivalent to that of a 
purely scalar growing mode, we could have also obtained this result by substituting the 
potential, + = -M/alxj, into Eq. (3.3). 

2. The Pattern from a Single String 

The metric around an uncompensated string is static, and hence produces no Sachs- 
Wolfe anisotropy. In contrast, the compensated string produces a characteristic linelike 
pattern. Only a finite length of such a string lies within the observer’s horizon, and only 
this length affects the anisotropy. Although different points on the string are at different 
distances from the observer, the location of the string can be characterised by the comoving 
distance u, to its closest point (0 < u0 5 1, normalised so that u, = 1 is at the observer’s 
horizon today), and every other point is at a greater distance from the observer. 
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Figure 4 Multipole amplitudes Al, for the anisotropy pattern around a single string, as 
a function of the closest redshift for strings at varying distances from oberver. The lowest 
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four moments are identified. Al is defined so that < IATsw/Z’~~ >= cp0,0(21 + l)IAl12. 

In Figures 1-3, we show all-sky maps of the anisotropy (the unobservable monopole 
term is subtracted) on a latitude-longitude grid, for strings at redshifts 0.13, 1.0, 3.0 
(comoving distances IL, = 0.06,0.30,0.50). The maps are oriented so that the string lies 
parallel to the polar axis at zero longitude, and its nearest point lies along zero latitude. 
The anisotropy is calculated numerically. For strings at high redshift, the pattern is a 
red strip along the string with a width equal to the apparent horizon size at the string 
redshift, and with hotspots at the two “endpoints” of the string (the points at highest 
redshift) which are in the deepest part of the potential well. The anisotropy is small in 
other directions. For string at lower redshifts, the anisotropy pattern grows in size and a 
dipole pattern arises as the observer is repelled away from the compensation around the 
string. Figure 4 shows the multipole amplitudes for the lowest 16 multipoles (including 
the unobservable monopole and dipole) as a function of string redshift. At low redshifts, 
the dipole and lower order multipoles dominate, but as the redshift increases, higher 
multipoles begin to dominate. 

To understand the figures better, consider the temperature at certain points where 
the Sachs-Wolfe integral is analytical. At the endpoint hotspots the potential only grows 
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Figure 5 Profile of temperature fluctuations observed as a function of angular distance from 
the centre of a domain wall, for walls at varying distances from the observer. The nun- 
bers identify the closest redshift of the wall. The all-sky temperature pattern is circularly 
symmetric. 

logarithmically, hence 
ATsw 

T 

which is bounded by the finite time of last scattering: AT/T 5 8.3~. In the limit that 
the string approaches the observer (uO + 0), the two endpoints approach the poles. At 
the poles, the anisotropy equals pTi(~~), h owever the apparent logarithmic divergence 
for small u, is in fact truncated to approach the limiting value above. Note that classical 
Sachs-Wolfe theory predicts zero anisotropy at the poles because they lie along surfaces 
of constant Newtonian potential whose gradient is perpendicular to the line of sight! In 
the direction opposite the string, 

u” 
1+4-- 

3cos-‘21, +2Jiy5 1 I 1+ ? + ; + i(l - u,2)3’2 
I 

. 

(3.6) 
The temperature diverges as $p(u,-i +lnu,) as the string approaches the observer (u,, + 
0), due to the Sachs-Wolfe Doppler and potential terms from the compensating line of 
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underdensity. The underdensity repels the observer, leading to blueshifted photons, but 
the observer is also high up in a potential well, which redshifts the photons. 

3. The Pattern from a Wall 

Since the field of a wall is localised, only photons which pass through the wall would 
suffer a temperature change. Consider a domain wall at a comoving distance r, from the 
observer. Only a finite circular region of the wall centred around the closest point on the 
wall lies within the horizon of the observer. Thus the observer sees a circular pattern of 
anisotropy. The temperature pattern is uniform outside a radius 0, given by, 

case, = 5. 90 
A photon moving at an angle 0 to the perpendicular to the wall which passes through 
the wall at time 7, experiences a temperature jump equal to -87r~(7~)o77~ cos8/7 which 
grows with 7,. To understand this, note that the comoving frames in which photon energy 
is measured are accelerated away from the repulsive wall in opposite directions. In the 
frame of the observer, this translates to a Doppler redshift as the photon crosses the wall. 
The velocity difference between the two frames, 7 acr~ is just twice the velocity generated 
by a static wall”. 

A photon coming from an angle 0 passes through the wall at time 71r = v0 -TV/ COB 8. 
If zlr is the redshift of the wall centre, the observed temperature pattern is, 

ATsw = 
T 

-~cosB(1-~)3 

167~7 
(3.8) 

= -- 1 - (1 +&)-i’s 
7 cos e 8 < e, z i - (I+ &)-li2. 

which goes smoothly to zero at the edge of the circle. Figure 5 demonstrates how both 
the size and maximum temperature deviation of the spot decrease as the redshift of the 
wall increases. 

IV. Implications 

Even the simplest and most quiescent configurations of topological defects can pro- 
duce observable effects in the form of density perturbations, differential flows of matter, 
and MBR anisotropy. For an uncompensated accreting point mass, anisotropies and flows 
extend beyond its horizon. For a compensated point mass, all observable effects are sup- 
pressed. However, it is not generally true that compensation suppresses observable effects 
of the defects. The compensated string has flows and anisotropies that extend to, but not 
beyond, its horizon. The uncompensated string, whose gravitational field consists only 
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of an angular deficit, does not generate flows or anisotropies, but has altered the global 
properties of the spacetime since its angular deficit extends beyond its horizon. However, 
an observer not in causal contact with the string cannot observe it, while a causally con- 
nected observer has only the gravitational lensing probe. Thus the compensated string is 
easier to observe. In the case of walls, both the compensated and uncompensated wall are 
equally observable. 

It is usually assumed that only moving seeds can generate anisotropies. In fact, 
cosmological effects can produce anisotropies even around static seeds, and compensation 
is not in general sufficient to remove these anisotropies. Upon comparing numbers, we see 
that the amplitude of anisotropy due to cosmological horizons is comparable or smaller 
than the anisotropy due to motions in a vacuum background: the typical anisotropy when 
looking directly at a single moving vacuum string is roughly 4z/1*-s, which is somewhat 
larger than the 8.3~ at the hotspots of a nearby compensated static FRW string. For 
domain walls, it has been calculated I1 that the anisotropy from a spherical wall bubble 
collapsing at redshift z, an d with a maximal size equal to the horizon at collapse, is 
about 8zb/3H0(l + 2,) 3/2 A < 19), whereas the maximal anisotropy from a static ( _ 
FRW wall at the same redshift is down by a factor 6/(7d). The patterns extend over 
comparable scales. Since in most models, a realistic configuration contains more than 
one defect per horizon, our calculated anisotropies are a lower bound to the large-scale 
observable anisotropy in those models. Most defects are mildly relativistic, he~nce including 
motion would further increase the anisotropies to the values found in small-angular-scale 
calculations with moving string networks ‘, but on somewhat larger scales (Veeraraghavan 
& Stebbins 1991, in preparation). 
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